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BIFURCATION AND STABILITY OF THE RELATIVE EQUILIBRIA
OF A GYROSTAT SATELLITE*®

V.N. RUBANOVSKIIL

Moscow

{Received 12 April 1991)

The bifurcation and stability of the relative equilibria of a gyrostat
satellite in the case when the rotor axis does not lie in a principal
plane of the central triaxial ellipsoid of inertia of the system are
investigated. The results are represented as a bifurcation diagram, on
which the distribution of the degree of instability of the relative
equilibria obeys the usual laws of bifurcation theory, with the role of
bifurcation parameter being played by the gyrostatic torque of the
rotor.

1. In a central Newton force field, we will consider the motion of a rigid body rigidly
attached to the axis of rotation of a statically and dynamically balanced rotor. We shall
assume that the rotor rotates relative to the body at a constant angular velocity £, and the
centre of mass C of the system moves along an unperturbed Keplerian circular orbit at an
orbital angular velocity a.

We introduce two Cartesian coordinate frames of reference: the orbital frame Cxyz, whose
Z axis is directed along the readius-vector of the satellite's centre of mass, the Z axis
along the tangent to the orbit in the direction of motion of the centre of mass, the ¥ axis
along the normal to the plane of the orbit and a frame Cz2,2; rigidly attached to the body
of the satellite, whose axes point along the principal central axes of inertia of the gyrostat.

The transformed potential energy of the gravitational forces and forces of inertia acting
on the satellite in the orbital frame, in units of ?, 1is given by {see /1/)
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Here 4,< 4,<{A4; are the principal central moments of inertia of the gyrostat satellite,
k; = JQu™'e; are the projections on the z; axes (j =1,2,3) of the gyrostatic torque
vector of the gyrostat, in units of o, / 1is the axial moment of inertia of the rotor, e; are
the cosines of the angles between the rotor axis and the z; axes and y; and f$; are the
projections on the z; axes of the unit vectors y and B along the radius-vector of the mass
centre of the satellite and the normal to the orbital plane; with this notation.

Ty =9 R -1 =0, mp=02 4B +BS—1=0 (1.1}
g = 738y + VaBe + vsBs =

The equations of relative equlibrium of the gyrostat satellite (relative to the orbital
coordinate frame) may be written as

ow,
By

2Wy = 2W 4 6Anyg + vag — 309,

= 3[(A =) 11 + M) =0,

£ == 3+ (v — A By — k=0 (123). (1.2)

where &, o0,V are undetermined Lagrange multipliers. Egs.(1.2) must be taken together with
Egs.{1.1); this gives a system of nine equations in the same number of unknowns A&, o, v, ¥ P
We fix some As:0,0,v and solve Egs.{1.2) for y; Bn
V=M@t By ={o—A)k®P (123 1.3
O, =34+ (0—4) v —4p (123
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Substitution of (1.3) into (1.1) yields a system of three linear equations in the
unknown k%, k2, k%, from which, assuming that

M0, A= (4, — 4;) (4, — 4;5) (45 — 4y
we obtain

_ (Ag— 4y) LDy
= AT os ey

ket i  Ly=)3+ (0— 4A;)(c— 4y) (123) (1.4

As a result we can write {1.3) in the form
ye=ttlh  pa MO AD (125 t.9)

To get a geometrical representation of the relative equilibria (1.5), (1.4}, we will
consider the domain D defined in the parameter space A,o0,v by the inequalities L, > 0, L, <
0, L;>> 0. The points of D are represented by real values of v, B;, k; computed from formulae
{1.5) and (1.4). The domain D is a cylindrical body, its profile is formed by three circles
L;=0(=1,2,3), which are analogous to the familiar Mohr's circles of elasticity theory.
It follows from {1.5) that the orientation of the gyrostat body at relative equilibrium is
independent of v. To each point on the profile of D there correspond eight equilibrium
positions, represented by the ¢, f§; values defined in (1.3) by the eight different com~
binations of signs of k;{(j = 1,2, 3). To symmetric points with respect to the plane A =10
there correspond dynamically equivalent equilibria of the satellite, which differ by a
rotation of the satellite about the vector § through an angle 180°.

2. Let us assume from now on that
ki=hey( =1,2,38), *+e+et=1, ko= JQa™t

where -— oo <Zk<Coc is a real parameter.

Consider the problem of the relative equilibrium of the gyrostat satellite in the direct
formulation, when the numbers 4, ¢ (j = 1,2,8) are assumed to be known and we have to find
all relative equilibria and investigate their evolution, bifurcation and stability as Kk
varies from — oc to oo,

We shall assume that

{4; — A} {dy — 45} {45 — 4)) 103 5% 0 2.1)

and the directions of the z; axes are so chosen that & >0( = 1,2, 3).

Let I' denote the curve defined in the space of the variables k, X, 0,v, v, §;,(G =1,2,3)
by Egs.{1.1} and (1.2) together with condition (2.1). Since Egs.(1.1) and (1.2) are invariant
to replacement of k4, 0, v, v5 8; by 1) —k —h, a,v,7;, =By 2 k, —h &, v, —y;, By 3) —k, A, 0, v,
—¥;, —Bs respectively, it follows that T' is a union of the four branches T, Ty T, Ty
defined by the following equations:

Tpdh=2{), o=a), v=v@), v=7%, p=Bk (2.2)
Fﬂ: A= —h (".k)’ o=g ('”k)1 v o=y (—k)r Y o=y ("k)v ﬂ =
—B (—k)

Pgdh=—dk), o=0(®), v=vk), v=—v®), B=pW
F{: A= k(—k)’ g == (f(“—k), v = V(“'k)x ¥ = -y (""k)v B = ""ﬁ (“"k)

Let I'* and I'** denote the projections of I' on the A, ¢,v,k and Ao, v subspaces,
respectively, and I')* and Ty/**(j =1, ...,4) the branches of I'* and [** corresponding to
the branches I'; of I'. The branches ['** are defined in parametric form by the first three
equations of (2.2). We shall use the term "representative points" for the points on the
curves I;** whose coordinates A, o,v for fixed k are defined by the first three equations
of (2.2). It Ffollows from (2.2) that the pairs I'** and Iy**, T,** and T ,**, are
symmetrically placed with respect to the plane A = 0, The pairs Ty»* and  T** I,** and
I's**, coincide identically, but the representative points move on them in opposite directions
as k varies from — oo to co. If k is fixed, passage from I ** I'** o T** T,**  inverts
the direction of the vectors ¥y and B. It will be shown in Sect.4 that each of the curves
T/**  consists of two branches AP AL and I;**®.  The branches of I'* are symmetrically
placed with respect to the hyperplanes A =0 and % = 0.

Let us investigate the behaviour of the curves T, * I'** as k-4 . Letting k— -+
so in {1.2), we obtain -
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#he
By==ne;, n== Iim—%—-.—:il, vy b

o v (j==1,2,3) (2.3)

Substituting B; y; from (2.3) into {(1.1), we obtain equations for A, o:

3 2 2 I ~
Yoo =0 w=( Yoy @4

F==1 ’ F=1

The first of these equations has two roots: 4;<T oy <4, << o* << A4; Substituting these
values of ¢ into the second equation of {(2.4), we obtain two values A,% A*. Thus T has four
asymptotes, defined by Egs.(2.3), to which we must add the equations ¢ = g, A == -+4, and
o = ¢*, A = -+h*. The curve I'** alsc has four asymptotes, defined by the equations O = Oy,
A=k, and o = 0¥, A= A%

3. We now consider the equations @; =0 (i =1, 2,3}, where @; are the functions defined
in {1.3). The equations define three identical cones in Ai,q,v space, whose apices lie on
the same straight line, at points O; with coordinates A =0, o0 = A4;, v = 4,; their axes are
parallel and lie in the plane A =0 at 45° angles to the v and@ ¢ axes. The cones @; =0
intersect the cylinders IL; =0 (i =1,2,3) in curves G; which project onto the plane =0
as pieces of hyperbolae

3 (0 — Ay} (o — 4a)

G;Z V=A1+ 4

(123)

The cones @; = 0 intersect the cylinders L; =0 (i,j=14,2,3; i#j} in ellipses E; E/,
which lie in parallel planes and project onto the plane A =0  as segments of parallel
straight lines:

Ei:v=30+A4,~34,;; E/':v =230+ 4, — 34, 123

It follows from {1.4) that if condition {2.1} holds and k%0, then T*¥* cannot
intersect the surface of the cones ®; =0 (i = 1, 2, 3), by which D is divided into fourteen
domains D& (j=1,...,7). The domains D;* and D; are symmetric to one another with respect
to the plane A =0, with A >0 for D;f and A<<0 for D;. The domains D, are
defined by the following inequalities:

Dk @, <0, O, <0; DF: O, >0, ©;<<0; Dyt ©,<<0, O >0
DFE: @, >0, @, >0 D40, >0 O,<0; D @, <0, P, <<
O, D7i: ®1<0. ®2>0
While D %, D&, Dt are bounded, D, D* D DX  are unbounded.

4. Egs.{1.1), (1.2} have the following solutions at %k = 0:

0=A11 V=A31 }*ZOV k= Gv Y!ZV:ﬂ:L 53“—‘ﬁ:ilv (4'1)
Ve=Ve=Pi =P =0 (123
v = 4, v = 4, L=0, k=0, 72=Y:i1! ﬁszﬁ:ii, (4.2}

Vo=n=Hfh=F/pR=0 (123

corresponding to which are 24 equilibrium positions of the satellite, in which the ;, 2, 24
axes coincide in some way with the 2, Yy, 2 axes. Formulae {4.1) define three groups P, P, P,
of relative equilibria, the values of the variables for P, and P; being obtained from (4.1)
by a cyclic permutation of the indices 1, 2, 3. In {4.1) y =41, =41 and any combination
of signs is admissible; hence each of the groups P, P,, P, contains four equlibria. Formulae
(4.2) give three more, analogous groups (;, @, @3 of equilibrium positions. Corresponding
to the equilibrium groups P, Q; (i = 1,2,3) in D are points P, @  with coordinates

PPro=4,, v=4; A=0 (123 @ 0=4, v=4,
A=0 {123

situated on the boundaries of the domains D& {=1,..., 7).

If |k| is small, one branch of TI** will correspond to each of the equilibria {4.1},
(4.2). Let us denote these branches by P; (v, B) @k v, B) i =1,2,3: v=::1, B= +1); using
Egs.(1.1) and (1.2), we obtain the following parametric representations for them, valid for
small Jk1:



453

242 3oyt
Px(k»?>ﬁ)30:41+m+'-~, V=As+§£’3k+m)+.u, (4'3)

A= vek— e g=1,p=21) (123)

16 (Ag — 43)
5, 1,B) 0= A, + e V= Ay + Besk + o 4 4.4
G kv B)o= 2+ iG(A,—Ag}+"" == Aq 5 BTA— A o
1 VHiegeqk® . .
XMTY%K""m+-~ =xLp=+41 (123
The representative points on I**, when == (), occupy the positions .2, @ (i =.i, 2,
3). Formulae (4.3), (4.4) enable us to determine which of the domains DFE{ =1,...,7) will
contain the representative points when % >0 and k<(0 (Table).
Pk B) s B ket Qv ) >0 k<t
Py(k, 1, 1 Dy Dy Qr(k, 1, 1} Dyt D~
P 2o Dy? Dy | @ik 4, —1) D Dy
3 ke, —1, 1) Dy~ Dyt Qs (&, —1, 1) Dy g‘+
Pyik, —1, —1) Dy~ Dyt Qs (&, —1, —1) D¢+ D:_
Pylk, 1, 1) Dt D, Qaik, 1, 1) Ds+ Bi
Pyik, 1, —1) Dy* Dy~ Qufk, 1, —1) Dt B
Pytk, —1, 1) D¢ Dt Qs (k, —1, 1) Dy~ D
Py(k, —1, —1) D, D 8"‘ s =4, =) Do o
Pylk, 1, 1) D+ Dy~ s {k, 1, 1) Ds+ o
Py(k, 4, —1) Dt Do | Gslk 4, —1) Da¥ o5
Pyik, —1, 1) Dy Dyt s {k, —1, 1) Dy~ b
Pylk, —1, —1) Dy~ D s (hy 1, —1) Dy 3

We now put the branches P; {k v. B), Qi k. v, B) (6 =1, 2,8) together to form the following
curves TIT*™ (f = A w =1,

T Py (k, 1, 1), Qs k1, —1),  Pylk, 1, 1)
0 po(k, —1, —1), Qs lk, —1, 1), Py ik, —1, —1)
05 Py, —1, 1), Qs {h, —1, —1), Py lk —1,1)
0O P, 1), Qe 1), Py (k, 4, —1)
T 0,k 1, 1), Pyth, 1, —1), Q1 1)
e, o, (& —1, —1), Pk, —1,1), 0y (ks ~1, —1)
e, o, &, —1, 1), Py, —1, —1), Q& —1, 1)
I‘It(e): Qy {k, 1, —1), Py (&, 1, 1), @y (K, 1, —1)

To explain these formulae, let us describe, say, the structure and position of the curve
e in D. We begin with the part P;(k, 1,1) of the curve. If k=10 the representative

point is in position P°; if k>0 it lies in D*; as k- oo it asymptotically
approaches the asymptote o =o,, A=Ak, If k<{0 the representative point of P, (k, 1, 1)
lies in D, and at some k= —k,<0 the curve P,(k, 1,1} Jjoins Q.{k 1, —1), on which
the representative point lies, if k=20, at Qy; if k<C0 it enters Dy and at

= —ky the curve @,(k, 1, —1) Jjoins P, (k 1,1, If k>0 the representative point of
Qs (k, 1, —1) enters D, and at some k=k, >0 Qs (k 1, —1) 3joins P, (k 1,1), on which
the representative point, if k = 0, occupies the position PS; if k>0 it enters D
and at k =1k Py (k, 1,1) 3Joins @, {k 1, —1). If k<« 0 the representative point of P,k 1,1)
lies in Dy and as k- — oo asymptotlcany approaches the asymptote ¢ = 0,, A = —A,. The
structure of the other curves I‘"‘“) is analogous.

The pairs of curves I‘;'*(") and 1‘:*"", I‘;*(“’ and 1‘4 are symmetncally placed
relative to the plane A =10, The pairs T and I‘”(”’ % ang e coincide,
but their representatlve points move in opposite directions as k varies from - o3 to oo, The
curves IT" (1 =1,...,4) 1ie in the part of D for which g < A4, whereas I'*® 1ie in the
part for which ¢ >A, . "

In A o,v,k space the branches I ¥ (l=1,...,4 =12 of T** correspond to

the branches IT® of TI'*, whose projection on the k,v plane is shown in the figure. The
curves are actually double (they consist of two "banks"). To different banks there correspond
relative equilibria in which the vector ¢ has opposite directions. Hence we conclude that
there are eight bifurcation values k= 4k (f=1,...,4) of the parameter k; when the pax-
ameter goes through these values, the number of relative equilibria changes by four, the
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me‘xx::Lmum number being twenty-four (if [k ]<Ck,) and the minimum eight (if [k | > ky). The
digits 0, 1, 2, 3 on the branches of the curves indicate the degree of instability of the
annronriste acuilibiriume: thic domwrnn ~F fnabald® o P,

QPpPrlpPLiate SQULALILIIUN,; ITRis Gegree Or instabiiity n.nqngea uxuy at bifurcation poiﬂts,
corresponding to the summits of “humps” and the bases of "“hollows".

5. The sufficient conditions for the relative egquilibria of the gyrastat satellite

o e P o e = £ e

\.L.-‘s,r tc ue a\.au.ﬁ.c /.Lf lua_y uv: written in LeTms 1 the paldmnevers I\., o, h' as IO.L.LOWb

-

a >0 2av +5>0, A=avP +bv+c¢ >0 (5.1)
a = A2H, b= 3H" — 200*H — A*H?
¢ = % H" 4+ 6H — 3oH' + (¢® — 3H'Y A 2H + o) *H?
H=(0—4) (o — 4) (o — Ay), H' — dH/da

Consider the following two surfaces in A, o, v space:
v o= vt (A o), vE= (b~} b — 4ac)/(2a)

defined by the equation A = 0. The functions v = +v¥ take real values for all admissible
values of A= 0. The surface v ==+v' intersects the cylinders I, =01{i = 1,2,3) in curves
G;. The surface v == v  intersects the cylinders L; =10 1in ellipses E;” which lie in
parallel planes and project onto the plane A =0 as segments of parallel straight lines

E' v =Ts—3(d, +45 (123

The surface v ==+v' has a discontinuity at o~=4, As o— A4, it asymptotically
approaches the plane o = 4,.

Conditions (5.1) are equivalent to the conditions /2/
2> 0, v > v,, v; = min (', v7), v, = max (v*, v7} {5.2)

It follows from (5.2) that the degree of instability ¥ of equilibria with v > vy, vy <<
V< vy, vV is 0, 1, 2 if a>0 and 1, 2, 3 if a< 0.

It was shown above that the curves [**O (I =1, ..., 4) are situated in the parxt of D for
which o < A4, and the curves I'1**®, in the part for which ¢ > 4,. For the former,
therefore, a>0, and for the latter, 2 < 0. Consequently, the degrees of instability on
the curves I;**™ are y=0,1, 2, while on [**® e have yx =1, 2, 3.

The results obtained by =n:ﬂve1nn the <f:h111rv conditions (5.2) for the nmn‘hhrla
(1.5}, {1.4) are shown in the fxgure where the digits 0, 1, 2, 3 labelling the branches of
the curves indicate the degree of instability of the appropriate equilibrium; this degree of
instability changes only at bifurcation points, corresponding to the summits of "humps" and

the bases of "hollows".
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STABILITY OF A SOLID CONTAINING A FLUID MOVING IN A FLUID*

P. CAPODANNO
France

{Received 3 December 1990)

A solid, suspended on a horizontal rod, with three pairwise orthogonal
axes of symmetry which is placed in an ideal incompressible fluid
executing a vortex-free motion is considered. The body has a cavity
containing a fluid which is covered by an elastic membrane. Under
certain conditions, the eguations of motion of the system permit uniform
translational motions of the whole system as a single body . The
stability conditions for such motions are given.

1. Pormulation of the problem. Let a solid S with three pairwise orthogonal axes of
symmetry move in an ideal incompressible fluid of density p which is at rest at infinity.
The body has a cavity containing an ideal fluid of density p’ covered by an elastic membrane
£ of density p*, the contour of which, 82, is fixed onto the wall of the cavity. The
vexternal fluid - body - internal fluid - membrane" system is located in a uniform gravi-
tational field with an acceleration g.

Z'

Fig.1l

Let us now introduce three orthogonal coordinate systems: the inertial coordinate system
O'Ty's with the unit vectors i/, j/, k¥ and with the r-axis directed along the ascending
vertical, a moving Oxyz coordinate system with theunit vectors i, j, k, the axes of which
coincide with the axes of symmetry of the body S, and the coordinate system QXYZ, the
axes of which are parallel to the x~, Yy~ and z-axes and the QXY plane contains the area
T which is occupied by the membrane in the undeformed state. We shall assume that the body
is suspended from a horizontal bar directed along the y'-axis using a solid rod Pg  of
negligibly small mass located along the z-axis and that OP =a and PQ = L. We shall
neglect the friction and action of the external fluid on the rod when the end of this rod Y
moves along the axis of suspension (see Fig.l).

Let 7 be the part of the cavity which is occupied by the fluid and let o be the part
of its wall which is wetted by the fluid. We will assume that the membrane is constantly in
contact with the fluid and that the part of the cavity which is enclosed between the membrane
¥Prikl.Matem. Mekhan. ,55,4,572-577,1991




