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The bifurcation and stability of the relative equilibria of a gyrostat 
satellite in the case when the rotor axis does not lie in a principal 
plane of the central triaxial ellipsoid of inertia of the system are 
investigated. The results are represented as a bifurcation diagram, on 
which the distribution of the degree of instability of the relative 
equilibria obeys the usual laws of bifurcation theory, with the role of 
bifurcation parameter being played by the gyrostatic torque of the 
rotor. 

1. In a central Newton force field, we will consider the motion of a rigid body rigidly 
attached to the axis of rotation of a statically and dynamically balanced rotor. We shall 
assume that the rotor rotates relative to the body at a constant angular velocity 1;1, and the 
centre of mass C of the system moves along an unperturbed Keplerian circular orbit at an 
orbital angular velocity o. 

We introduce two Cartesian coordinate frames of reference: the orbital frame CX~Z, whose 
s axis is directed along the readius-vector of the satellite's centre of mass, the 3: axis 
along the tangent to the orbit in the direction of motion of the centre of mass, the 3 axis 
along the normal to the plane of the orbit and a frame Cxr+r, rigidly attached to the body 
of the satellite, whose axes point along the principal central axes of inertia of the gyrostat. 

The transformed potential energy of the gravitational forces and forces of inertia acting 
on the satellite in the orbital frame, in units of me, is given by (see /l/) 

w=+ 9 (3A,Y;- A$ - 2k,&) 
I=?' 

Here A, < A, < A3 are the principal central moments of inertia of the gyrostat satellite, 
k, = JL%r'ej are the projections on the Zj axes (j = 1, 2, 3) of the gyrostatic torque 
vector of the gyrostat, in units of o, J is the axial moment of inertia of the rotor, e_i are 
the cosines of the angles between the rotor axis and the xl axes and yj and fij are the 
projections on the xj axes of the unit vectors y and 8 along the radius-vector of the mass 
centre of the satellite and the normal to the orbital plane; with this notation. 

The equations of relative equlibrium of the gyrostat satellite (relative to the orbital 
coordinate frame) may be written as 

~=3[(A,--o)y,+hB,]=O, ~=3hy,+(v--A&3,-k,=O(l23) (1.2) 

2W, = 2W +6hrrrB +vng - 3on, 

where h,a,v are undetermined Lagrange multipliers. Eqs.(l.Zl must be taken together with 
Eqs.fl.1); this gives a system of nine equations in the same number of unknowns &a, Y, Y$,$j. 

We fix some h#O,a,v and solve Eqs.fl.2) for Yj, 6j: 
y1 = wEI@I-l, p1 = (0. -A,) k,Q;' (1 2 3) (1.3) 

Q1 = 3h' + (a - A,)+ -A,) (1 2 3) 
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Substitution of 
unknown k,*, k,', W, 

we obtain 

(1.3) into (1.1) yields a system of three linear equations in the 
from which, assuming that 

?A #O< A = (A, -A*)& - Ar) (A3 --A,) 

AS a result we can write (1.31 in the form 

To get a geometrical representation of the relative equilibria (1.5), (1.41, we will 
consider the domain D defined in the parameter space A, (J, y by the inequalities L,>O, L,< 
0, L3>0. The points of D are represented by real values of yj,&, kj computed from formulae 
(1.5) and (1.4). The domain D is a cylindrical body, its profile is formed by three circles 
Lj = 0 (i = 1, 2, 3), which are analogous to the familiar Mohr's circles of eiaStiCity theory. 
It follows from (1.5) that the orientation of the gyrostat body at relative e~i~ibrium is 
independent of Y. To each point on the profile of D there correspond eight equilibrium 
positions, represented by the b,pj values defined in (1.3) by the eight different com- 
binations of signs of k,(j = 1,2, 3). To symmetric points with respect to the plane h=O 
there correspond dynamically equivalent equilibria of the satellite, which differ by a 
rotation of the satellite about the vector p through an angle 180". 

2. Let us assume from now on that 

k* = !CQ (j = 1, 2, 3). e12 + e,$ + es2 = I, k = J&P 

where - m<k<m is a real parameter. 
Consider the problem of the relative equilibrium of the gyrostat satellite in the direct 

formulation, when the numbers A,, ej(j = i,2,3), are assumed to be known and we have to find 
all relative equilibria and investigate their evolution, bifurcation and stability as k 
varies from -00 to 00. 

We shall assume that 

6% - AJ(& -A) (-43 - a11 e1e@3f Q (2.1) 

and the directions of .the xl axes are so chosen that ej > 0 (j = 2, 2, 3). 
Let I' denote the curve defined in the space of the variables 

by Eqs.(l.l) and (1.2) together with condition (2.1). 
k, X+ o, v, Yj, '$1 (j = 1, 293) 

Since Eqs.tl.1) and (1.2) are invariant 
to replacement of k, A, or v, YJ~ $r by 1) -k, 4, G,Y, yj, -@j; 2) k, --h, a, Y, --yj. @I; 3) -k, A, a, v, 
--Yri -Bt9 respectively, it follows that I' is a union of the four branches 
defined by the following equations: 

rn ro* rs, I‘, 

I",: h = h(k), IJ = 0 (k), y = v (k), Y = y tk), fi = fi (k), 

r,: h = 4. (--k), D = u (-k), v = v (-k), y = y (-k); fi = 

-B (--k) 

cm 

r,: h = --)i (k), u = u(k), v = v (k), y = --y (k), fl = p*(k) 

r,: h = k f-k), u = c (-kf, Y = v (-k), y = --y (-k), fi = -fr (_kj 

Let I'* and I'** denote the projections of I' on the h,a,v, k and &,a,~ subspaces, 
respectively, and rJ* and I;** (j = 1, . ...4) the branches of I'* and 'r** corresponding to 
the branches rJ 05 r. The branches ry 
equations of (2.2). 

are defined in parametric form by the first three 
me shall use the term "representative points" for the points on the 

curves rl** whose coordinates A, o,v 
of (2.2). 

for fixed k are defined by the first three equations 
It follows from (2.2) that the pairs PI** and I'$**, r,** and 

symmetrically placed with respect to the plane 
p,**, are 

rs**, 
h = 0, The pairs Pl** 

coincide 
and I',**, p*** and 

identically, but the representative points move on t,hem in opposite directions 
as k varies from - 00 to m. If k is fixed, Passage from rz**,pa** to rp**,rg** inverts 
the direction of the vectors y and p. 
r,** consists of two branches 

It will be shown in Sect.4 that each of the curves 
rj**o) 

placed with respect to the hyperplanes 
and r,**(*) 

h = 0 
The branches of r* are symmetrically 

and *k = 0. 
Let us investigate the behaviour of the curves f, r*,r+* 

00 in f1.21, we obtain 
as k-+-&m. Letting k+S_ 
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(2.3) 

Substituting pj,vj from (2.3) into (1.1)‘ we obtain equations for h, u: 

The first of these equations has two roots: A,<o, <A, <u* <A,. Substituting these 
values of a into the second equation of (2.4), we obtain two values hsa,h*'. Thus r has four 
asymptotes, defined by Eqs.(2.3), to which we must add the equations G = o,,h = &h, and 
o = a*, A = i-h*. 
h=&h* - 

The curve I'** also has four asymptotes, defined by the equations (r = o*, 
and D =- is*, h = +?V*. - 

3, We now consider the equations Qi = 0 fi = 1,2,3), where Qft, are the functions defined 
in (1.31. The equations define three identical cones in h, 0, v space, whose apices lie on 
the same straight line, at points Oi with coordinates h -= 0, a := &,Y -A,; their axes are 
parallel and lie in the plane h=O at 45O angles to the Y and (I axes. The cones @+ = 0 
intersect the cylinders Li = O(i = 1,2,3) in curves Gi which project onto the plane h=O 
as pieces of hyperbolae 

The cones @i = 0 intersect the cylinders Lj = 0 (i,j = 1,2,3; i#j) in ellipses Ei, Ei', 
which lie in parallel planes and project onto the plane X=0 as segments of parallel 
straight lines: 

E,:v=3a+A,---A,; E,‘:v=3u+A1-3A3 (i 2 3) 

It follows from (1.4) that if condition (2.1) holds and k+O, then r** cannot 
intersect the surface of the cones @* = 0 (i = 1,2,3), by which D is divided into fourteen 
domains Di+ @=1,...,7). The domains Dt and D, are symmetric to one another with respect 
to the plane h=O, with A>0 for Dji and h<O for Dj-. The domains D,* are 
defined by the following inequalities: 

While .L),*, D,$, D,* are bounded, DA &P-t, D,+. D,* are unbounded. 

4. Eqs.(l.l), (1.2) have the following solutions at k = 0: 

u = At, Y = A,, h = 0, k -= U, vz = y = _+i, j& = 8 = -r_i, 

ya = ys = p1 = &, = 0 (1 2 3) 

-=A,, v=ds, h=O, k=O, yz=y=-&l, &=j3==&1, 

ys = y1 = 61 = pz = 0 (2 2 3) 

(4.1) 

(4.2) 

corresponding 
axes coincide 

to which are 24 equilibrium positions of the satellite, in Which the 21, s,* G -~ - 
in some way with the x, y, s axes. Formulae (4.1) define three groups I'-',, P,,P, 

of relative equilibria, the values of the variables for P, and PS being obtained from (4.1) 
by a cyclic permutation of the indices 1, 2, 3. In (4.11 y = ii, B = )1 and any combination 
of signs is admissible: hence each of the groups P,,P,,P, contains four equlibria. Formulae 
(4.2) give three more, analogous groups Qa,Qa,Qa of equilibrium positions. Corresponding 
to the equilibrium groups Pi,Qi (i = 1,2,3) in D are points Pp. Qr" with coordinates 

PZ “: cy = Ax, Y = A,, h = 0 (1 2 3); Qi”: u = A,, v = A,, 

h = 0 (9 2 3) 

situated on the boundaries of the domains i)$(j = *,...,7). 
If Ik 1 is small, one branch of F** will correspond to each of the equilibria (4.1), 

(4.2). Let us denote these branches by 6'~ (k,y,p), Qi (k, Y,@) (i = $,2,3: y = &I, B =&i); using 
Eqs.(l.l) and (l.Z), we obtain the following parametric representations for them, valid for 
small lkl: 



P,(k,y,B):a=A,+ 
e,‘JkP 

+ 
3c,‘ka 

16(&--A,) ‘-” v=As+@esk+- Is(&..a,)+ ...' 
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(4.3) 

The representative points on I-* , when k = 0, occupy the positions 
3). Formulae (4.3), (4.4) enable us to determine which of the domains D,*{j = 
contain the representative points when a>0 and kt0 (Table). 

P,o(t 7. 8) k>O RICO Q, CC YS PI 
I 

)I>0 k<U 

g$ 

f4.9 

Pi”, Qj” (i = 1, 2, 
1 f . * .* 7) will 

We now put the branches Pi@, y, 81, QS (k Y$ 8) (i = *, 2, 3) together to form the following 

curves r:*('l (E = 1, . . ., 4; 1c = 1, 2): 

r1 I*(‘): P, (k, 1, 11, 

ry: P, (k, -1, --I), 

rr”): P, (k, -1, I), 

r:*(l): P, (k, 1, -l), 

F:*(*': Qi (k, 1, 1), 

I':*(*): Qz (k, -1, --1), 

l.p: 91 (k, -1, 1h 

I’y@‘: Q1 (k, 1, --I), 

-0) 
To explain these formulae, let us describe, say, the structure and position of the curve 

r1 in D. We begin with the part P, (k, 1,l) of the curve. If k =O the representative 

point is in position Plo; if k>O it lies in &*; as k-+m it asymptotically 
approaches the asymptote a =o*, h = h,. If k<O the representative point of 
Lies in D,- and at some k = -ks< 0 

P, (k, 1, 1) 
the curve P, (k, 1, 1) joins Q, (k, 1, --1), on which 

the xepresentative point lies, if k = 0, at Q3’; if k t0 
k = -k8 
Qs 6k 1, 

the curve Qs (k, 1, -4) joins P, (k, f, 1). If k> 0 
it enters Da-and at 

-1) enters Dqc 
the representative point of 

and at some k = k4>0 Q9 (k, 1, -1) joins 
the representative point, if 

P, (k, 1, 1), on which 

and at k = k6 ps (k, 1, t) 
k = 0, occupies the position PC; if k>O it enters D4+ 

joins Q3 (k, 1, -If. 
lies in It,- 

If k<O the representative point of PO (k,2,1) 
and as k-t-w ~~~ptotical~y approaches the asymptote a = o#, h = -h*._ The 

structure of the other curves rl is analogous. 

The pairs of curves ry(*) and I'j*("), rrfxt and rF(" are symmetrically ph33a 
relative to the plane h = 0, The pairs Tp(*) and ryCx), rF(*) and rF*ix) coincide, 
but their representative points move in opposite directions as k varies from - 00 to by. The 
curves I?eCO (1 = 1, , . ., 4) lie in the part of D for which o(d,, whereas I'?(') lie in the 
part for which o>d,, . 

In %.,a,~, k space the branches rF) (1 = 1, . , ., 4; x = 9, 2) 0f r** correspond to 

the branches I'?(') of r*, whose projection on the k,v plane is shown in the figure. The 
curves are actually double (they consist of two "banks"). 
relative equilibria in which the vector y 

To different banks there correspond 
has opposite directions. Hence we conclude that 

there are eight bifurcation values k = _tk,(j = 1, . . .,4) of the parameter k; when the 
ameter goes through these values, the number of relative equilibria changes by four, 

par- 
the 
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maximum number being twenty-four (if Ik l<k,) and the minimum eight (if (k (>kJ. The 
digits 0, 1, 2, 3 on the branches of the curves indicate the degree of instability of the 
appropriate equilibrium; this degree of instability changes only at bifurcation points, 
corresponding to the summits of "humps" and the bases of "hollows". 

5, The sufficient conditions for the relative equilibria of the gyrostat satellite 
(1.5), (1.4) to be stable 111 may be written in terms of the parameters h,o,v as follows 
/2/: 

a > 0, 2av _t b > 0, A = a@ + bv + c > 0 
a _I h_2ff, b = 3H’ I_ &$-ZH - h-4Ha 

e = ~@ViP -t- 6H - 3oH' + (oa - 3H') h+H + CJ~-~H~ 

H=(a-- A,) (o - A,) (a - A& H' = @i/do 

(5.1) 

Consider the following two surfaces in h, u, Y space: 

v = v* (h, u), Y* = (b & l’b2 - 4m)l(2a) 

defined by the equation h = 0. The functions v = vi take real values for all admissible 
values of h# 0. The surface v = Y+ intersects the cylinders Li = 0 (i = 1,2,3) in curves 
Gi. The surface Y = Y- intersects the cylinders L, = 0 in ellipses Ei" which lie in 
parallel planes and project onto the plane h = 0 as segments of parallel straight lines 

F ;I# : Y = 7a - 3(A, i- AJ (1 2 3) 

The surface Y = Y+ has a discontinuity at o = A,. As lJ+A, it asymptotically 
appsoaches the plane u = A,. 

Conditions (5.1) are equivalent to the conditions /2/ 

a> 0, y >v,. v1 = min (Y', v-), va = max (v', v-) (5.2) 

It follows from (5.2) that the degree of instability x of equilibria with v > v21 VI< 
v<vz. v<v1 is 0, 1, 2 if a>0 and 1, 2, 3 if a<O. 

It was shown above that the curves l?,**(r) (1 = 1, . . . . 4) are situated in the part of D for 
which o<A,, and the curves r,**(z) in the part for which 02 A,. For the former, 
therefore, a>% and for the latter, a’<O. Consequently, the degrees of instability on 
the curves I?,**(') are x = 0, 1, 2, while on pl**(*) we have x = 1, 2, 3. 

The results obtained by analysing the stability conditions (5.2) for the equilibria 
(1.5), (1.4) are shown in the figure, where the digits 0, 1, 2, 3 labelling the branches of 
the curves indicate the degree of instability of the appropriate equilibrium; this degree of 
instability changes only at bifurcation points, corresponding to the summits of "humps." and 
thebases of"hollows" . 
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STABILITY OF A SOLID CONTAINING A FLUID BOOING IN A FLUID* 
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France 
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A solid, suspended on a horizontal rod, with three pair-wise orthogonal 
axes of symmetry which is placed in an ideal incompressible fluid 
executing a vortex-free motion is considered. The body has a cavity 
containing a fluid which is covered by an elastic membrane. Under 
certain conditions, the equations of motion of the system permit uniform 
translational motions of the whole system as a single body. The 
stability conditions for such motions are given. 

1. Forsailation of the p~obtem. Let a solid S with three pairwise orthogonal axes of 
symmetry move in an ideal incompressible fluid of density p which is at rest at infinity. 
The body has a cavity containing an ideal fluid of density p' covered by an elastic membrane 
C of density p', the contour of which, dZ, is fixed onto the wall of the cavity. The 
"external fluid - body - internal fluid - membrane" system is located in a uniform gravi- 
tational field with an acceleration g. 

\a 

Fig.1 
Let us now introduce three orthogonal coordinate systems: 

@E'@'Z* with the unit vectors i’, j’, k 
the inertial coordinate system 

vertical, 
and with the s'-axis directed along the ascending 

a moving 0x.p coordinate system with theunit vectors i, j,k, the axes of which 
coincide with the axes of symmetry of the body S, and the coordinate system 
axes of which are parallel to the I-, y- 

QXYZ, the 
and s-axes and the blXY plane contains the area 

'C which is occupied by the membrane in the undeformed state. We shall assume that the body 
is suspended from a horizontal bar directed along the y'-axis using a solid rod Pg of 
negligibly snail mass located along the z-axis and that OP = a and PQ = L. We shall 
neglect the friction and action of the external fluid on the rod when the end of this rod Q 
moves along the axis of suspension (see Fig.1). 

Let z be the part of the cavity which is occupied by the fluid and let o be the part 
of its wall which is wetted by the fluid. We will assume that the membrane is constantly in 
contact with the fluid and that the Dart of the cavity which is enclosed between the membrane 
3kPrikZ.Matem.Mekhan.,55,4,572-577,1991 


